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Abstract
DelPhiPKa is a widely used and unique approach to compute pKa's of ionizable groups that does

not require molecular surface to be defined. Instead, it uses smooth Gaussian-based dielectric

function to treat computational space via Poisson-Boltzmann equation (PBE). Here, we report

an expansion of DelPhiPKa functionality to enable inclusion of salt in the modeling protocol.

The method considers the salt mobile ions in solvent phase without defining solute-solvent

boundary. Instead, the ions are penalized to enter solute interior via a desolvation penalty term

in the Boltzmann factor in the framework of PBE. Hence, the concentration of ions near the

protein is balanced by the desolvation penalty and electrostatic interactions. The study reveals

that correlation between experimental and calculated pKa's is improved significantly by taking

into consideration the presence of salt. Furthermore, it is demonstrated that DelphiPKa repro-

duces the salt sensitivity of experimentally measured pKa's. Another new development of Del-

PhiPKa allows for computing the pKa's of polar residues such as cysteine, serine, threonine and

tyrosine. With this regard, DelPhiPKa is benchmarked against experimentally measured cysteine

and tyrosine pKa's and for cysteine it is shown to outperform other existing methods

(DelPhiPKa RMSD of 1.73 vs RMSD between 2.40 and 4.72 obtained by other existing pKa pre-

diction methods).
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1 | INTRODUCTION

The acidic and basic amino acid residues of a protein may be ionized

at a particular pH. The ionization state of these residues contribute to

conformation, stability, solubility, and function of the protein as a

function of pH.1–3 Hence, ionizable residues of biological molecules

play a significant role in protein-protein interaction, protein-ligand

binding, enzymatic reaction, and so forth.4,5 As pKa determines the

ionization state of the residues, it is important to know the pKa values

of titrable groups in proteins and how these values depend on the sur-

rounding environment. However, accurate prediction of pKa's of ioniz-

able groups remains a challenge since it requires to determine the

equilibrium distribution of ionization states of side chain titrable resi-

dues along with the conformational changes.

Several computational techniques have been explored for pKa's

calculations.6–10 These methods can be broadly classified into three

classes: (a) microscopic; (b) empirical; and (c) macroscopic methods. All

these techniques have their weakness and strength in capturing the

biophysical insights which in turn establish their ability to match the

experimentally determined pKa values. All these three classes of

approaches are described in detail by Alexov et al.6 Microscopic

methods such as molecular dynamics (MD), quantum mechanics

molecular mechanics (QM/MM) consider the atomic level of detail of

the system while calculating the thermodynamics properties. Gener-

ally, these methods are more accurate as they incorporate the confor-

mational change of protein while a residue changes from protonated

to unprotonated form. However, convergence problem in performing

the configurational sampling, large computational cost makes these

methods unrealistic for most of the protein applications. On the other

hand, empirical methods use knowledge-based terms and scoring

functions to describe the effect of the environment on pKa's of pro-

tein residues.11–14 Since they do not consider conformational sam-

pling explicitly, they are very fast and in some cases quite accurate.

Indeed, PROPKA has recently been found to be a reliable protein pKa
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predictor,14–17 with reported RMSD as low as 0.89. Other classes of

methods are macroscopic methods based on continuum electrostatics

(CE) using either Poisson Boltzmann (PB) or General Born

(GB) equations. Traditional implementation of these methods requires

that the computational space be divided into solute and solvent

regions and no conformational changes to be considered. Several

groups tried to improve the CE approaches by coupling ionization

and conformation using Monte Carlo (MC) sampling technique,

introducing side chain flexibility,18–20 modifying hydrogen bond

orientation,21,22 and adding extensive side chain rotamer sam-

pling.22,23 All these additional implementations made the PB-based CE

method more accurate. Recently, we reported a Gaussian-based

method, where a smooth Gaussian-based dielectric function describes

the dielectric properties of the solute and solvent on the same foot-

age. This pKa's prediction method, which has been already implemen-

ted in DelPhi,24 uses Gaussian-based smooth dielectric function which

in turn mimic the plausible conformational changes associated with

changes of ionization states. In this approach, there is no need to

define molecular surface while calculating the electrostatic energies

and the corresponding pKa's.

The electrostatic interactions within solute depend on the proper-

ties of the solvent. Typically charge residues are located on the sur-

face of the solute, these are accessible to salts (NaCl, KCl, K2SO4, etc.)

which are present in the solvent. Thus, the presence of salt affects the

screening of electrostatic interactions. Furthermore, ions can bind to

oppositely charged protein residues25,26 or also can cause chaotropic

effect in solvent structure. Therefore, protein stability can be changed

in the presence of salt. It mostly depends on the charge distribution

on protein surface and in turn on pH as indicated by the following

experimental observations. It has been found that the stability of chy-

motrypsinogen increases with salt concentration below pH 1.5 but it

decreases at higher pH. Surprisingly, no effect on stability of barnase

has been revealed in presence of 600 mM KCl at pH 3.5 but it stabi-

lizes the protein at higher and lower pH. Hence, the effect of salt on

protein stability is not linear and upfront. Therefore, it is difficult to

understand clearly the role of salt from investigation at a single pH. It

is essential to study the titration curve at a wide range of pHs and salt

concentration to reveal the interplay between ionization processes

and salt contribution.

Typically, titratable groups are considered to be Asp, Glu, His, Lys,

and Arg residues, since they are frequently ionized at physiological

pH. However, there are other residues, typically refereed as polar resi-

dues, which may also titrate in physiological pH. The list includes Ser,

Thr, Cys, and Tyr residues. These groups play an important role when

present in catalytic site and the state of protonation is the key to their

function. Therefore, it is essential to determine the pKa for these

groups to understand catalytic reaction and its pH dependence. For

example, serine protease is an enzyme that catalyzes the hydrolysis of

a peptide bond with an active site serine residue.27 The serine residue

in this case acts as a nucleophile during the catalysis. Furthermore, the

catalytic cycles of cysteine protease and tyrosine phosphatase involve

the deprotonation of cysteine or tyrosine.28,29 Lastly, in cysteine pro-

tease family, thiolate is an essential intermediate which undergoes

nucleophilic attack in the active site of protein.30,31 Therefore, it is

essential to know the ionization state of serine, cysteine, tyrosine or

threonine to understand the pH dependence of catalysis.

In this work, we report two new functionalities of DelPhiPKa. The

first one is the addition of salt in the modeling protocol. This is done

without determining solute-solvent interface, that is, molecular sur-

face free protocol. The upgraded DelphiPKa is benchmarked against

experimentally measured pKa's and is shown to deliver better results

compared with the previous version. The second development allows

for polar residues such as cysteine, serine, threonine and tyrosine to

be treated as titratable residues and their pKa's to be predicted. The

DelPhiPKa predictions for pKa's of cysteine residues in catalytic site

are tested by comparing with experimental data and it is shown that

the results are better than previously reported by other existing

methods. DelPhiPKa is also shown to reproduce the experimental pKa

for tyrosine and to predict the pKa shift based on the surrounding

environment for serine.

2 | METHODS

We briefly describe the DelPhiPKa methods for predicting pKa's of

titrable residues here. Details of implementation of the method can be

found elsewhere.24 DelPhiPKa method calculates the probability of

protonation of each titrable residue as a function of pH and deter-

mines the pKa as pH at which probability of protonation is 50%. For

doing so, the electrostatic free energy of the titrable residues in their

protonated as well as deprotonated states is calculated using DelPhi

built-in module. It is important to mention that the calculations are

done with smooth Gaussian-based dielectric function and do not

require determining solute-solvent interface.32,33 Our previous

works32,33 have demonstrated that such an approach results in

dielectric function inside the macromolecule that varies from low

reference value of about 2 up to 20 and more depending on the

atomic packing. At the van der Waals (vdW) surface, it increases

smoothly and reaches the value of 80 in bulk water. Thus, Gaussian-

based smooth dielectric function is designed to capture several

effects: (a) dielectric inhomogeneity of macromolecules; (b) existence

of water cavities inside, if any; (c) the fuzziness of the

macromolecule-water region; and (d) the ability of ions to visit space

close to vdW surface.

3 | ELECTROSTATIC FREE ENERGY

Smooth Gaussian based dielectric function is used for all the electrostatic

energy calculations, the implementation of the model in DelPhi has been

described in previous work.34 The details of the calculation of electro-

static energy and its components (charge-charge pairwise interaction,

Gpairwise
i, j chargedð Þ; polar energy term, Gpolar

i,charged; desolvation energy, ΔGdesol
i,charged)

were explained in earlier paper24. These three energy components are

determined for ith residue in both charged (Gpairwise
i, j chargedð Þ, Gpolar

i,charged,

ΔGdesol
i,charged) as well as neutral state (Gpaiwise

i, j,neutral, G
polar
i,neutral, ΔG

desol
i,neutral). We

obtain the change in pairwise interaction, polar energy term and del-

sovation energy due to change in protonation state as follows:
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ΔGpairwise
i, j ¼Gpairwise

i, j,charged−G
pairwise
i, j,neutral, ð1Þ

ΔGpolar
i ¼Gpolar

i,charged−G
polar
i,neutral, ð2Þ

ΔΔGdesol
i ¼ΔGdesol

i,charged−ΔG
desol
i,neutral: ð3Þ

Therefore, the total electrostatic energy of the protein at given

protonation state is expressed as

Gi ¼ γ ið Þ 2:3kbT pH−pkref,solventai

� �h i
+ ΔGpolar

i +ΔΔGdesol
i

� �
+
XN

j¼1, j 6¼i

ΔGpairwise
i, j :

ð4Þ

In this way, total electrostatic energy of each microstate is calcu-

lated and using the distribution of this energy, probability of ionization

of ith residue is calculated at a given pH. The probability of ionization

of ith residue at a given pH is determined using the Boltzmann distri-

bution of corresponding electrostatic energy

Pi ¼
PM
m¼1

χ ið Þ:e−Gm pHð Þ=kT

PM
m¼1

e−Gm pHð Þ=kT
, ð5Þ

where system has total M microstates and at mth microstate,

energy is Gm(pH) at a given pH. χ(i) is 1 when ith residue is ionized and

0 if it is neutral. The probability of ionization of each ionizable residue

is calculated as a function of pH. The pH at which probability of ioni-

zation is 50% is defined as pKa. To reduce computational cost, Del-

PhiPKa applies clustering approach to enumerate the Boltzmann

distribution as described in the original paper.32

The treatment of mobile ions in the framework of Poisson-

Boltzmann equation (PBE) by adding a desolvation penalty term is

introduced by Jia et al.35 The same method is used here for treating a

given concentration of salt which is comprised of mobile ions. The

desolvation penalty is calculated via Born equation

ΔGsolv ¼NAz2e2

8πϵ0r0

1
ϵr
−
1
εw

� �
, ð6Þ

where NA is the Avogadro constant, z is the valence, e is the charge, r0

is the effective radius of the ion, ϵ0 is the permittivity of the vacuum.

ϵr and εw are the dielectric constant at a given location and in bulk

water, respectively. Therefore, incorporating the desolvation penalty

in PBE, the corresponding PBE is written as

r: ε rð Þrφ rð Þ½ � ¼ −4π ρsolute rð Þ+
XN
i¼1

2qic
bulk exp

−ΔGsolv

RT

� �� �
−qiφ rð Þ
RT

� � !
:

ð7Þ

The ΔGsolv term is nonzero only in the close proximity of the pro-

tein molecules, it is zero in bulk water.

4 | DATABASE AND PARAMETERS OF
DELPHIPKA

In order to predict the accuracy of the method, we benchmarked the

calculated pKa's against an experimental protein pKa's database

(http://compbio.clemson.edu/databases/database_pKa.xlsx) compiled

by us, which is a large dataset containing 82 proteins and 773 residues.

Most of the residues of this database are surface exposed and accessi-

ble to the salt. The database includes protein pKa database (http://

pka.engr.ccny.cuny.edu/) and cases compiled from literature. Note

that pKa-cooperative database is not suitable for this work, since here

we emphasize on the role of salt, while pKa-cooperative set is com-

prised of buried residues away from water phase (and thus not sensi-

tive to salt). The structure files were taken from PDB databank. The

missing atoms and residues were re-generated using PROFIX

(a software module within the JACKAL package, https://honiglab.

c2b2.columbia.edu/software/Jackal/Jackalmanual.htm#profix). We

removed all the compounds, other than the amino acids, such as

heme, SO4, PO4, all ions and water molecules. For the pKa's calcula-

tions, we used sigma = 0.70 and internal dielectric = 8 in DelphiPKa.

These parameters are optimized through benchmarking against exper-

imental data.24 It is shown in an earlier paper24 that the Gaussian

dielectric provides a significant improvement in pKa's prediction com-

pared to homogeneous model. Therefore, in this work, Gaussian

smooth dielectric model is used. The atomic charges and radii are

taken from Amber forcefield parameters for all the calculations.36

5 | RESULTS AND DISCUSSIONS

With regards with the new features of DelPhiPKa reported in this

work, several investigations were carried out. First, we investigated

the change of the performance of DelPhiPKa upon adding the salt

option; this was done by benchmarking the predicted pKa's against

experimentally determined pKa's (see Methods section) in presence

and absence of salt. Second, we probed the performance of

DelPhiPKa to predict experimentally measured pKa shifts of various

residues due to variation in salt concentrations. Finally, we checked

DelPhiPKa performance against experimental data of pKa's of Cys

and Tyr residues. We also tested the ability of DelPhiPKa in predict-

ing pKa shift for Ser residue depending on the structural

environment.

5.1 | Does the salt option improve pKa's predictions?

The total RMSD and correlation coefficient for the predicted pKa's of

total 752 residues (Asp, Glu, His, and Lys) using DelphiPKa is 0.74 and

0.96, respectively, in presence of salt (I = 0.15 M). The plot of experi-

mental vs calculated pKa's is shown in Figure 1A. The slope and inter-

cept of the linear fit is 0.94 and 0.41, respectively. The deviation of

calculated from experimental pKa, both for all the residues as well as

for each residue type, are presented in Table 1. Among the pKa values

of 752 residues, for 487 residues (65%), the deviation of calculated

values from experimental one is less than 0.5 pK unit. For 660 residues

(88%), the deviation is less than 1 pK unit and only for 3% of the resi-

dues, the shift is greater than 2 pK unit. Most of the residues, which

falls under these 3%, are buried inside the protein (Table 2). Thus,

Table 2 indicates that buried residues (RSA < 10) have higher RMSDs

irrespective of residue types. Better predictions can be made if larger

variance of the Gaussian function is used as pointed in earlier work.32

Focusing on different residue types separately, it has been found that
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the RMSD for Glu and Asp is similar (0.70 and 0.72, respectively)

[Figure 1A]. However, for Lys, the RMSD is significantly lower (0.39)

and for HIS it is the largest (1.08). Hence, the overall correlation of

the calculated pKa's with experiment seems exceptionally good for

such a large dataset.

The agreement between calculated pKa's and the experimental

one drops significantly when salt concentration is not taken into

account. The total RMSD in this case becomes 0.94. Therefore, pres-

ence of salt plays a crucial role in determining the pKa of ionizable res-

idues. The plot of experimental pKa vs calculated pKa for all the

752 residues in absence of salt is shown in Figure 1B. The slope and

intercept for the linear fit are 1.075 and 0.63, respectively. Figure 1B

also displays deviation of calculated pKa with respect to experimental

one for each individual residue types.

The RMSDs for Glu, Asp, and Lys in absence of salt are much

higher (0.91, 0.92, and 0.94, respectively) compared to RMSDs in

presence of salt (0.70, 0.72, and 0.39, respectively). For His, it is prac-

tically the same (1.06 without salt and 1.08 in presence of salt). These

results indicate that salt effect is playing a vital role in determining

ionization state of titratable groups.

It should be pointed out that the improvement of the accuracy

of pKa's predictions is not only due to inclusion of the salt, but the

treatment of the system via a smooth Gaussian-based dielectric

function. If one uses the traditional protocol that considers solute as

a low dielectric cavity with a sharp border between solute and

solvent, with the same parameters and salt concentration reported

above, the corresponding RMSD is 1.24 (Figure S1), compared with

0.74 above.

For accessing the quality of the results, we compared the cal-

culated data with the null model predictions, that is setting all

protein pKa shifts to 0 and so, all the pKa values are equal to the

intrinsic pKa of the corresponding residues. In Table 3, the RMSD of

all the residue types are shown in presence of salt (I = 0.15 M),

absence of salt (I = 0) and null model. Table 3 reflects that

DelPhiPKa outperforms the null model by an average of 0.19 pK

unit. While this is a relatively small improvement, it should be

pointed out that previous works were unable to improve the null

model.16,37 One of the reasons for such relatively small improve-

ment is that the experimental shifts of pKa values are only between

0.5 and 1.5 pK units.

FIGURE 1 Benchmark of calculated pKa against protein pKa database for each individual residue type at (A) I = 0.15 M and (B) I = 0

TABLE 1 Statistics of the deviation of calculated pKa from the experimental dataset

|pKaexp-pKacal| Total (752) Glu (258) Asp (275) His (111) Lys (109)

>0.5 35% 37% 32% 54% 20%

>1.0 12% 13% 11% 24% 3%

>1.5 6% 6% 6% 11% …

>2.0 3% 2% 4% 6% …

>2.5 … … 2% 5% …

>3.0 … … 1% 3% …

TABLE 2 Statistics of RMSD based on the residue positions

Relative surface accessible area

Total Glu Asp His Lys

% RMSD % RMSD % RMSD % RMSD % RMSD

RSA < 10 0.07 1.75 0.06 1.41 0.08 1.66 0.16 2.07 … …

10 < RSA < 20 0.06 0.96 0.04 1.27 0.08 0.49 0.11 1.31 0.01 0.17

20 < RSA < 50 34 0.64 34 0.59 27 0.72 45 0.72 37 0.44

50 < RSA 53 0.53 57 0.59 57 0.51 30 0.65 63 0.36
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5.2 | Benchmarking DelPhiPKa against experimental
data of salt dependence of pKa's

Here, we investigate whether the predicted pKa shifts due to change

in salt concentration correlate with the experimental data. We col-

lected four datasets from several studies38–40 for four different pro-

teins where pKa's were determined experimentally as a function of

salt concentration (salt concentration was varied in the range of

0.01-1.5 M). Lee et al.38 performed acid/base titrations of SNase by

using H NMR spectroscopy at different concentrations of KCl. It is

reported that with increase in the salt concentration from 0.01 M to

1.5 M, pKa values of His-8, His-46, His-121, and His-124 increase by

0.92, 0.44, 1.05, and 0.93 pK units, respectively. We calculated the

pKa values of these four His residues using DelPhiPKa. The salt

dependencies of experimental and calculated pKa values for SNase

are compared in supporting information (Table S1). The correlation

between the calculated and experimental pKa values and the varia-

tions of both experimental and calculated pKa's as a function of salt

concentration for these four His residues are shown in Figure S2 and

Figure S3, respectively. The correlation coefficient (R) of 0.95, 0.96,

0.98, and 0.99 for His-8, His-46, His-121, and His-124, respectively,

indicates that DelPhiPKa methods can well reproduce the salt depen-

dence of measured pKa values.

Kao et al.39 investigated the salt dependence of His pKa values of

sperm whale myglobin (Pc-Mb). The experimentally measured pKa

values indicate that despite of having difference in their solvent acces-

sibility and nature of the surrounding residues, most of the His resi-

dues exhibit similar rise of their pKa values (~0.3 pK unit) on changing

the salt concentration from 0.02 M to 1.5 M (Table S2). The correla-

tion of experimental vs calculated pKa's and the change in experimen-

tal as well as predicted pKa's with variation of salt concentration for

all the His residues are presented in Figures S4 and S5, respectively.

In Table S2, for His-36, measured experimental value indicates that

pKa's are insensitive to salt concentration between 0.02 M and 1.5 M.

DelPhiPKa also predicts that there is a negligible increase (0.02 pK

unit) in pKa's by increasing the salt concentration from 0.02 to 0.2 M

and a slight change of 0.05 pK unit going from 0.5 M to 1.5 M of salt.

This observation reveals that the DelPhiPKa model is reasonably accu-

rate in predicting the effect of salt. We estimated the correlation coef-

ficient of the calculated pKa's for all the His residues except His-36

and plotted in Figure S4. We obtained the correlation coefficient of

0.98, 0.91, 0.85, 0.98, 0.63, and 0.99 for His-12, His-48, His-81, His-

113, His-116, and His-119, respectively, for Pc-Mb. In the same

paper,39 authors also described the salt sensitivity of His pKa for horse

heart Mb (Eq-Mb). The calculated pKa's are compared with the experi-

mentally measured pKa's in Table S3. Similarly to Pc-Mb, in Eq-Mb, for

His-36, the pKa values are found to be not influenced by salt concen-

tration both in experiment and model calculation. Correlation between

experimental and calculated pKa's and variation of these pKa's with

salt concentration are plotted in Figure S6 and S7 respectively for the

6 His residues in Eq-Mb excluding His-36. We can see in Figure S6

that DelPhiPKa predicted pKa's behave the same way as experimental

pKa's, as we change the salt concentration.

Abe et al.40 evaluated the influence of salt concentration on the

pKa values of acidic residues in hen egg white lysozyme. The predicted

pKa values along with experimental pKa's are shown in Table S4 which

reveals that except for Glu35 and Asp87, DelPhiPKa can capture the

salt sensitivity of the pKa for other residues similar way that in experi-

ment. Glu35 is located in the active site of lysozyme and it is not sur-

face exposed. Therefore, the influence of the presence of salt is

negligible in this case. We can observe in Table S4 that the pKa of

Asp87 decreases with increase of salt concentration from 0.005 M to

0.1 M but increases from 0.1 M and 0.4 M. Such an unusual behavior

may be caused by the fact that Asp87 is located at the N-terminal of

α-helix (residues 88-98) and the conformation may be affected by the

salt concentration. Since in our calculations, the structure is kept rigid,

this may explain why we were unable to reproduce the abnormal

change of experimentally measured pKa. The correlation between pre-

dicted and experimental pKa's is estimated and plotted for six acidic

residues (except Glu35 and Asp87) in Figure S8. The correlation coef-

ficient for Glu7, Asp18, Asp48, Asp52, Asp101, and Asp119 is deter-

mined to be 0.95, 0.99, 0.88, 0.94, 0.93, and 0.99, respectively. In

Figure S9, the variation of both experimental and calculated pKa with

varying salt concentration is plotted.

Lastly, we compared all the calculated pKa's with the correspond-

ing experimental data coming from 78 residues and four proteins and

plotted them together in Figure 2 (excluding His-36 in both Pc-Mb

and Eq-Mb, Glu35 and Asp87 in lysozyme). The correlation coefficient

of 0.92 and RMSD of 0.54 indicate that DelPhiPKa method can accu-

rately predict the effects of salt concentration.

5.3 | Benchmarking Cys pKa's

The pKa of a Cys residue, not involved in disulfide bridge, can vary sig-

nificantly compared to their intrinsic pKa. It was shown experimentally

that pKa's of Cys residues in non-catalytic sites are usually in the range

TABLE 3 RMSD for each residue type

GLU ASP HIS LYS

Total number 258 275 111 109

Calc. pKa at I = 0.15 0.70 0.75 1.08 0.39

Calc. pKa at I = 0 0.91 0.92 1.06 0.94

Null-model 1.04 0.93 1.21 0.49

FIGURE 2 Overall correlation between experimental and calculated

pKa's at various salt concentrations
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of 7-9 whereas in the catalytic site they can be as low as 2.88.41–43

Thus, the pKa value of Cys residue depends on the environment that

protein provides. Awoonor-Williams and Rowley44 generated a Cys

pKa's experimental data set comprised of 18 Cys residues in 12 pro-

teins including both elevated and lowered pKa's. The same work calcu-

lated the pKa of these 18 residues with three methods using implicit

solvent model (MCCE, PROPKA, and H++) as well as explicit solvent

models with CHARMM36 and AMBER force field. The article con-

cluded that the methods using implicit solvent model is not reliable in

predicting Cys pKa's with RMSD between 3.41 and 4.72 whereas the

RMSD obtained using explicit solvent models varied between 2.40

and 3.20. It was suggested by the authors that the methods still need

to be improved for predicting Cys pKa since the null-model predicts

the RMSD of 2.74 which is close to the best RMSD achieved by the

explicit model. Here, we benchmark the new DelPhiPKa against the

same dataset. The calculated pKa's are compared with the experimen-

tally measured data and plotted in Figure 3. The RMSD obtained is

1.73 which is the lowest among all the five methods including implicit

as well as explicit solvent models. Thus, the new version of DelPhiPKa

outperforms all other existing methods (implicit and explicit water

models) and also the null-model in predicting the Cys pKa's.

5.4 | Benchmarking Tyr pKa's

There are only few experimental pKa values for Tyr residues reported

in the literature45 among which structure files are available for three

of them.46,47 Hence, we calculated and compared the pKa's only for

these three residues belonging to two different proteins. The pre-

dicted pKa for Tyr30 and Tyr49 in ribonuclease Sa (RNase Sa) is 10.42

and 10.60 respectively whereas the experimentally measured pKa's

are 11.3 and 10.63, respectively.45 Khare et al.47 measured the pKa of

Tyr33 in the B1 immunoglobulin G- (IgG-) binding domains of

protein G, the value of which is 11 whereas DelPhiPKa predicts the

pKa as 10.72. These results indicate that DelPhiPKa is successful in

predicting pKa's for Tyr residues as well (an example of Ser pKa is pro-

vided in supplementary material, Figure S10).

6 | CONCLUSIONS

A new upgraded version of DelPhiPKa is reported in this work that

enables salt concentration to be included in the surface-free protocol.

In this way, DelPhiPKa remains a unique continuum electrostatic

approach to calculate pKa's without determining the boundary

between solute and solvent. The inclusion of the salt in the calcula-

tions is shown to deliver better results compared to the cases without

salt. This confirms previous observation made in case of salt depen-

dent protein-protein binding.35 It should be pointed out that the

improvement in pKa's predictions is significant (about 0.2 pK units)

and it is achieved on larger dataset (larger than the original pKa data-

set, see Methods section). Furthermore, the protocol was tested

against experimentally determined changes of pKa's upon change of

the salt concentration and very good correlations were obtained. It

should be mentioned that both experimental and computed pKa

changes are very small (less than half of pKa unit), which makes the

comparison quite difficult. Lastly, DelPhiPKa was enabled to calculate

pKa's of groups typically referred as polar groups. It was shown that

the method outperforms all existing method and lower the RMSD

even compared to explicit water models. Thus, here we report impor-

tant enrichments of DelPhiPKa capabilities and significant improve-

ment of its prediction accuracy. The improvement of prediction

accuracy is attributed to both, the Gaussian-based smooth dielectric

function and the novel treatment of ions.
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